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Arakelov Geometry is a combination of Algebraic geometry (schemes) and
Hermitian complex geometry. Its main achievement today is the proof of
the Mordell conjecture. In this paper we will introduce some tools used in
Arakelov Geometry over reduced orders. We will discuss in the first section
properties of reduced orders, and introduce Arithmetic Chow groups of
such objects (a slight refinement of the classical Chow groups in Algebraic
Geometry).

1 Orders

Through all this paper, all rings are supposed commutative with unit. In this section,
we will introduce a class of rings called Orders.

1.1 Preliminaries

Lemma 1.1. Let A,B be rings, f : A 7→ B a ring homomorphism, b ∈ B. The
following are equivalent:

(i) ∃a0, . . . , an ∈ A such that

bn + an−1b
n−1 + · · ·+ a0 = 0

(ii) the A-sub algebra A[b] generated by b is a finitely generated A-module.

(iii) There exists a finitely generated A-submodule M = Aω1 + · · · + Aωn of B such
that 1 ∈M and bM ⊂M .

Proof. We prove the following implications:

(i) ⇒ (ii): Let g ∈ A[X] be a monic polynomial such that

g(b) = bn + an−1b
n−1 + · · ·+ a0 = 0 (1)
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Let M be the finitely generated A-submodule M = A+Ab+ · · ·+Abn−1 ⊂ A[b].
By 1 we have that bn ∈ M , multiplying by b gives bn+1 ∈ M hence inductively,
bk ∈M ∀k ≥ 1. Thus M = A[b] is finitely generated.

(ii) ⇒ (iii): Choose M = A[b].

(iii) ⇒ (i): Let M be as in (iii). Let (ai,j) ∈Mn(A) such that

bωi =

n∑
i=1

aijωj

Let C = (bδij − aij) where δij =

{
1 if i = j
0 else.

One has

C · ω =


∑n
j=1 bδ1jω1 −

∑n
j=1 a1jωj

...∑n
j=1 bδnjω1 −

∑n
j=1 anjωj

 =

aω1 − aω1

...
aωn − aωn

 = 0

Crammer’s rule gives

det(C) · ω = CadCω = 0 ⇒ det(C) · ωk = 0 ∀k ≥ 1

Hence det(C) ·M = 0 and det(C) = 0 since 1 ∈M . Finally, consider

g(X) = det(δijX − aij) ∈ A[X]

= Xn + an−1X
n−1 + · · ·+ a0

Then g(b) = det(C) = 0.

Corollary 1.2. Let R be a ring, suppose that R is a finitely generated free Z-module,
of rank n and S = {x ∈ R, x is regular}. Then R is integral over Z.
Moreover if K := S−1R denotes the total quotient ring of R then

K = R⊗Z Q

Proof. By Lemma (1.1) for a ∈ R, ∃c0, . . . , cn ∈ Z such that

an + cn−1a
n−1 + · · ·+ c0 = 0

If a ∈ S then ϕa : x 7→ ax is injective (Otherwise ∃u, v ∈ R, u 6= v and au = av ⇒
a(u− v) = 0 which is impossible.) hence c0 6= 0 and for

b = an−1 + cn−2a
n−2 + · · ·+ c1

One gets
ab = −c0 ∈ Z \ {0}

Hence
S = Z \ {0} and R ↪→ S−1R ∼= R⊗Z (Z \ {0})−1Z ∼= R⊗Z Q
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Definition 1.3. An order is a ring O that is also a finitely generated Z-module. It is
called an integral order if O is an integral domain.

Example 1.4. • a lattice Λ = {
∑
aixi, ai ∈ Z} is an order.

• Z[i] = {a+ ib, a, b ∈ Z} is an integral order.

• In general, for a number field K, the ring of integers

OK = {x ∈ K | x integral over Z} (2)

is an integral order (by Lemma 1.1), called the maximal order in K.

Here is an important property about special cases of orders.

Proposition 1.5. Let O be an order.

(i) O is reduced ⇔ there exists algebraic number fields K1, . . . ,Kn and a ring ho-
momorphism ϕ : O ↪→

⊕n
i=1OKi

(ii) O is normal ⇔ there exists algebraic number fields K1, . . . ,Kn and a ring iso-
morphism ϕ : O ∼−→

⊕n
i=1OKi

Before proving this proposition, we need the following lemma:

Lemma 1.6. Let O be a reduced order, K = S−1O its total quotient ring.

(i) K is an Artinian ring, and one has

K ∼=
n⊕
i=1

Kmi

Where mi ∈ Spec(K). Moreover, Kmi = Oqi for qi = O ∩mi.

(ii) Let K(C) = HomR(K,C) and Ki(C) = HomR(Ki,C). For τ ∈ Ki(C) let
τ ∈ K(C) be given by

τ(x1, . . . , xn) = τ(xi)

. Then one has
n∐
i=1

Ki(C) ∼= K(C)

. In particular, #K(C) = dimQ(Ki).

Proof. (i) By exactness of localization, K is Noetherian. Let p1, . . . pn be minimal
primes of K, since K is also reduced (exactness of localization again)

Nil(K) =

n⋂
i=1

pi = (0)



1 Orders 4

Let p ∈ Spec(K), be a proper prime ideal, and x ∈ p. Then x is a zero divisor,
hence ∃y 6= 0 such that xy = 0. In particular, xy ∈ pi for all i = 1, . . . , n.
If x /∈ pi∀i then y ∈

⋂
pi = (0) which is impossible. Hence ∃i such that x ∈ pi

and

p ⊆
n⋃
i=1

pi

By the prime avoidance lemma, p ⊆ pi for some i, thus p = pi. Hence all the pi
are maximal and as K is Noetherian, we conclude that it is Artinian.
Now, recall from Lemma 1.6 in [1] that one has the decomposition

K ∼=
n⊕
i=1

Kmi

As O is integral and flat over Z, one has that ∀q minimal prime in R, q∩Z = {0}
(since Z is an integral domain) and so q ∩ S = ∅, thus qi = O ∩ mi are minimal
primes in O. Finally,

Nil(Kmi) =
⋂

p∈mSpec(Kmi
)

p = miKmi = Nil(K)mi = (0)Kmi = (0)

Hence Kmi are fields.

(ii) Let τ ∈ Ki(C) such that τ(x1, . . . , xn) = τ(xi) then τ �Ki= τ and τ(Kj) = 0 for
i 6= j. Thus the map

τ 7−→ τ =

{
τ �Kj= 0 if i 6= j
τ �Ki= τ if i = j

is injective. Now let ei = (0, . . . , 1, . . . , 0), σ ∈ K(C). Since e2i = ei, σ(e2i ) =
σ(ei) ⇒ σ(ei) = 1 (since σ(ei) can not be 0 as σ(1) = 1. Thus ∃i such that
σ(ei) = 1, it is unique since for σ(ej) = 1 with i 6= j one has

0 = σ(eiej) = σ(ei)σ(ej) = 1

Now let τ = σ �Ki , then τ = σ.

Now we prove Proposition 1.5:

Proof proposition 1.5. (i) ⇒) Suppose O is a reduced order.
For simplicity, we note Kmi simply by Ki. Consider the following diagram :

O OKi

K ∼=
⊕n

i=1Ki Ki

∃φi
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Then one has an induced map ∃ϕ : O −→
⊕n

i=1OKi .
Suppose

ϕ(x) = 0 in

n⊕
i=1

OKi ⇒ ∃i such that φi(xi) = 0 in OKi

⇒ xi = 0 in Ki ∀i

⇒ x = 0 in

n⊕
i=1

Ki
∼= K = O ⊗Z Q.

As O is flat over Z,
0 −→ O ↪→ O⊗Z Q = K

Thus x = 0 in O and ϕ is injective.

⇐) Suppose ∃ϕ : O ↪→
⊕n

i=1OKi and consider the following diagram

O
⊕n

i=1OKi

O ⊗Z Q = K
⊕n

i=1Ki
∼

Let x ∈ O such that xm = 0 for some m ≥ 1, then xmi = 0 in Ki for all
i = 1, . . . , n. Since Ki are number fields,

xmi = 0⇔ xi = 0

Thus φi(xi) = 0 for all i = 1, . . . , n and ϕ(x) = 0 in
⊕n

i=1OKi . Since ϕ
is injective by assumption, x must be 0 hence O has no non-zero nilpotent
elements.

(ii) ⇒) Suppose O ∼=
⊕n

i=1OKi and let q1, . . . , qn be minimal prime ideals of O,
then if we localise at any qi, Oqi = OKi is integrally closed by definition of
OKi , hence O is normal.

⇐) Now suppose O is normal, and let q1, . . . , qn be minimal prime ideals of O.
Recall that Oqi = Ki and K ∼=

⊕n
i=1Ki. By (i) (normal rings are reduced)

we have an injection

ϕ : O ↪→
n⊕
i=1

OKi

To show our isomorphism, it suffices to show that for all p ∈ Spec(O)

ϕp : Op
∼−→ (

n⊕
i=1

OKi)p

Let p ∈ Spec(O), as Op is an integral domain, ∃!qi ⊂ p such that q is
minimal. Thus for all j 6= i

O \ p ∩ qj 6= ∅ and ∀x ∈ qj , x = 0 in Oqj
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Hence
(Kj)p = {0}

And
ϕp : Op −→ (OKi)p

which is clearly in isomorphism since Rp is an integral domain.

We need a little lemma in order to prove our final and main result of this section.

Lemma 1.7. Let M be a finitely generated free Z-module and let φ be an injective
homomorphism. Then

#
(
M/

φ(M)

)
= |det(φ)|

Proof. Let {ω1, . . . , ωn} a Z-basis, φ ∈ End(M) such that

φ(wi) =

n∑
j=1

bijwj , B = (bij) ∈Mn(Z)

By the Smith normal form,

∃P,Q ∈ Gln(Z) such that PBQ = diag(ci) := C ∈Mn(Z)

Now let fP , fQ, fC the respective endomorphisms of M given by P,Q and C, then we
have a commutative diagram

M M

M M

fQ

∼

fC φ

fP

∼

Thus

#
(
M/

φ(M)

)
= #

(
M/

fC(M)
∼=

n⊕
i=1

Z/
(ci)

)
= |c1 . . . cn|

= |det(fC)| = |det(fP ) det(fC) det(fQ)| = |det(φ)|

Since φ(ω) = B · ω.

Theorem 1.8 (product formula). Let O be a reduced order, K = S−1O be its total
quotient ring. then for x ∈ k×∏

p∈mSpec(O)

#
(
O/

p

)−ordp(x) ∏
σ∈K(C)

|σ(x)| = 1
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Proof. Suppose x is regular (x ∈ S) then φx : a 7→ ax is an injective ring homomor-
phism, and by Lemma (1.7)

#
(
O/

xO
)

= |det(φx)|

Let Ki be number fields such that

K ∼=
n⊕
i=1

Ki

Let x = (x1, . . . , xn) and
φx(a) = (x1a1, . . . , xnan)

Let φi ∈ End(Ki) given by φi(ai) = xiai, then

det(φx) =

n∏
i=1

detφi

Recall that since Ki are algebraic number fields, one has that

NKi(C)(xi) = det(φi) =
∏

σ∈Ki(C)

σ(xi)

⇒ |det(φi)| =
∏

σ∈Ki(C)

|σ(xi)|

For τ ∈ Ki(C) we define τ ∈ KC such that

τ(x1, . . . , xn) = τ(xi)

Then by Lemma (1.6)(ii) one has a bijection

n∐
i=1

Ki(C)
∼−→ K(C)

Therefore,

|det(φx)| =
n∏
i=1

|detφi| =
n∏
i=1

∏
τ∈Ki(C)

τ(xi) =

n∏
i=1

∏
τ∈Ki(C)

τ(x) =
∏

σ∈K(C)

σ(x)

Hence, one only needs to show that

#
(
O/

xO
)

=
∏

p∈mSpec(O)

#
(
O/

p

)ordp(x)
Now recall that O is a 1-dimensional Noetherian ring, let p ∈ Spec

(
O/

xO
)

and

suppose xO ⊆ p is not minimal, i.e

xO ⊆ p ( q for some q ∈ Spec
(
O/

xO
)
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Then
π−1(p) ( π−1(q) in O, where π : O � O

/
xO

Thus ht(π−1(p)) = 1 which contradicts the dimension of O. Hence by Krull’s principal
ideal theorem,

ht(p) = 1 ⇒ dim
(
O/

xO
)

= 0

Thus O
/
xO is an Artinian module. In particular, it has finite support.

Let Supp
(
O/

xO
)

= {p1, . . . pm} ⊆ mSpec
(
O/

xO
)

(= Spec
(
O/

xO
)
<∞). Again,

by Lemma 1.6 in [1], one has

O/
xO ∼=

m⊕
i=1

Opi
/
xOpi

In particular, there is a composite series

{0} = M0  M1  · · ·  Mm = M

where
Mi
/
Mi−1

are simple Artinian Opi-modules.

Let m ∈Mi
/
Mi−1

, then by simplicity

0 6= Opim ⊆Mi
/
Mi−1

⇒ Opim = Mi
/
Mi−1

Now consider

Ann
(
Mi
/
Mi−1

)
:= I ↪→ Opi � Opim = Mi

/
Mi−1

a 7→ am

Then I is maximal by simplicity (if I ⊆ a ( Opi then A/
I
∼= A/

a 6= 0 which is
impossible) thus I = piOpi (since Opi is local) and one has

Mi
/
Mi−1

∼= Opi
/
piOpi

∼= O
/
pi

Therefore,

#
(
O/

pi

)m
=

m∏
i=1

#
(
O/

pi

)
=

m∏
i=1

#
(
Mi
/
Mi−1

)
=

m∏
i=1

#(Mi)

#(Mi−1)
=

#(M)

#(M0)
= #M

Since ordpi(x) = lengthOπ

(
Opi

/
piOpi

)
= m, one finally gets

#
(
O/

xO
)

=

m∏
i=1

#
(
O/

pi

)
=

∏
p∈mSpec(O)

#
(
O/

p

)ordp(x)
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1.2 Modules over reduced orders

In the following, we are only interested in reduced orders, we will investigate finitely
generated O-modules, over a given reduced order O.

Definition 1.9. Let O be a reduced order. A finitely generated O-module H is said
to have pure rank r if

r = dimOq
Hq for all minimal prime ideals q

The non negative integer r is called the rank of H.

We have the following useful and characteristic proposition

Proposition 1.10. Let O be a reduced order. Then an O-module H is of pure rank
r if and only if there exist elements x1, . . . , xr of H such that:

1. H
/

(Ox1 + · · ·+Oxr) is a torsion Z-module.

2. Ox1 + · · ·+Oxr is a free O-module of rank r.

We need the following short lemma:

Lemma 1.11. Let O be a reduced order. For a finitely generated O-module H we
have the following:

H is a torsion Z-module ⇔ H is of pure rank 0.

Proof. Suppose H is a torsion Z-module, i.e. H ⊗Z Q = 0. Recall that since O is
integral and flat over Z, for all minimal prime q of O, q ∩ Z = {0}. Thus we can
consider the commutative diagram

Z Z(0) = Q

O Oq

Hence

{0} = (H ⊗Z Q)⊗Q Oq = H ⊗Z Oq � H ⊗O Oq

h⊗ x 7→ h⊗ x

And we get
H ⊗O Oq = Hq = {0}

Conversely, suppose that H has pure rank 0, and let q1, . . . , qn be minimal prime ideals
of O. Then by Lemma (1.6) qi = O ∩mi with mi ∈ m-Spec(K) and

K ∼=
n⊕
i=1

Oqi
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One has that

H ⊗O K ∼=
n⊕
i=1

H ⊗O Oqi
∼=

n⊕
i=1

Hqi = {0}

On the other hand,

H ⊗O K = H ⊗O S−1O ∼= S−1H ∼= H ⊗Z S
−1Z = H ⊗Z Q

Now let us prove Proposition 1.10.

Proof proposition 1.10. Suppose H is of pure rank r > 0, and let q1, . . . , qn be minimal
prime ideals of O, then as in the proof of Lemma 1.11 one has

K ∼=
n⊕
i=1

Oqi and H ⊗O K ∼=
n⊕
i=1

Hqi .

Let {ωi1 , . . . , ωir} be a basis of Hqi (recall that dimOqi
Hqi = r) and

ωj = (ω1j , . . . , ωnj ) ∈
n⊕
i=1

Hqi .

Since H ⊗O K = H ⊗Z Q, there exists a non-zero integer N and elements x1, . . . , xr
of H such that

Nωj = xj ⊗ 1 ∀j = 1, . . . , r.

Hence
N ·

(
H/

(Ox1 + · · ·+Oxr)
)

= {0}

and thus H
/

(Ox1 + · · ·+Oxr) is a torsion Z-module. In particular, one has that

rank(Ox1 + · · ·+Oxr) = r

By Lemma (1.11)

Hqi
/

(Ox1 + · · ·+Oxr)qi = {0} for all qi

By abusive use of the exactness of the localization (which makes it commute with
direct sums and images of morphisms)

(Ox1 + · · ·+Oxr)qi = im(

r⊕
i=1

Oxi −→ O)qi

= im(

r⊕
i=1

(Oxi)qi −→ Oqi)
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And again
(Oxi)qi = im(O ·xi−−→ O)qi

∼= im(Oqi
·xi−−→ Oqi) = Oqixi

Therefore,
Hqi = Oqix1 + · · ·+Oqixr

As H has pure rank r, {x1, . . . , xr} form a basis of Hqi and

a1x1 + · · ·+ arxr = 0⇒ a1 = · · · = ar in Oqi ∀i
⇒ a1 = · · · = ar in O

Thus Ox1 + · · ·+Oxr is a free O-module of rank r.

Conversely, suppose that H
/

(Ox1 + · · ·+Oxr) is a torsion Z-module, then by Lemma

(1.11) as done above,
Hqi = Oqix1 + · · ·+Oqixr

Since {x1, . . . , xr} is a basis of Ox1 + · · · + Oxr, Hqi is a free Oqi-module of rank r
for all i, hence H is an O-module of pure rank r.

Finally, we prove the following two general lemmas that will be useful in the next
talks.

Lemma 1.12. Let Q ⊂ K ⊂ K ′, where K,K ′ are finite dimensional reduced Q-
algebras.
Recall that K(C) := HomR(K,C), K ′(C) := HomR(K ′,C).
For σ ∈ K(C) consider

K ′(C)σ = {τ ∈ K ′(C) | τ �K= σ}

Then for x′ ∈ K ′
σ
(
NK′/K(x′)

)
=

∏
τ∈K′(C)σ

τ(x′)

Proof. Let σ be an element of K(C). We proceed as follow:

case1 : K ′ is a number field. (So is K)

Fix σ1 ∈ K ′(C)σ and set K1 = σ1(K), K2 = σ1(K ′). We define K2/K1(C) to
be the set of homomorphisms from K2 to C over K1, i.e.

K2/K1(C) := {ψ ∈ K2(C) | ψ �K1
is the canonical inclusion}.

Then one has a bijection

K2/K1(C) ∼= K ′(C)σ

ψ 7→ τ = ψ ◦ σ1 :
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Indeed, ψ ◦ σ1 = ψ′ ◦ σ1 ⇒ ψ = ψ′ since σ1 is an injective ring homomorphism,
and surjectivity follows from the following: for an element y of K2, there is an
element x′ ∈ K ′ such that y = σ1(x′) and so ψ(y) = ψ◦σ1(x′) ∈ C. Now observe
that the two left and down right commutative blocks of the following diagram
give

K

K1 K ′ C

K2

σ1

σ

σ1

τ

ψ

⇒
K

K ′ C

σ

τ

commutes.

Now let x′ ∈ K ′, we have that σ1(x′) ∈ K2 and

NK2/K1
(σ1(x′)) =

∏
ψ∈K2/K1(C)

ψ(σ1(x′)) =
∏

τ∈K′(C)σ

τ(x′)

On the other hand,

NK′/K(x′) = det (ϕx : K ′ → K ′) ∈ K
⇒ σ(NK′/K(x′)) = det

(
ϕσ1(x) : K2 → K2

)
= NK2/K1

(σ1(x′))

=
∏

τ∈K′(C)σ

τ(x′)

case2 : K is an algebraic number field. (So K ′ is a finite product of number fields.)

Let (x′1, . . . , x
′
n) = x′ and x′ ∈ K ′ ∼=

⊕n
i=1K

′
i. By multiplicativity of the norm,

NK′/K(x′) =

n∏
i=1

NK′
i/K

(x′)

For all τ ∈ K ′i(C)σ we define τ ∈ K ′(C)σ such that τ(x′1, . . . , x
′
n) = τ(xi). Then

by (??) in Lemma ??, one has a bijection

n∐
i=1

K ′i(C)σ
∼−→ K ′(C)σ

τ 7→ τ
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Hence ∏
τ∈K′(C)σ

τ(x′) =

n∏
i=1

∏
τ∈K′

i(C)σ

τ(x′)

=

n∏
i=1

σ(NK′
i/K

(x′)) (by case 1)

= σ(

n∏
i=1

NK′
i/K

(x′)) = σ(NK′/K(x′)).

case3 : In general, K is a finite product of number fields.
let

K =

n⊕
i=1

Ki

and let pj = {(x1, . . . , xn) ∈ K | xj = 0} be the minimal prime ideal of K such
that Kpj = Kj . Let K ′j := K ′pj , then one has

K ′ =

n⊕
j=1

K ′j and NK′/K(x′) = (NK′
1/K

(x′1), . . . , NK′
n/K

(x′n)) ∈ K

Since K is reduced, then again by (??) in Lemma (??) one has a bijection

n∐
i=1

Kj(C)
∼−→ K(C)

σj 7→ σ

Since Kpj = Kj , for x = (x1, . . . , xn): σ(x) = σj(xj).
In particular,

σ(NK′/K(x′)) = σ((NK′
1/K

(x′1), . . . , NK′
n/K

(x′n))) = σj(NK′
j/K

(x′j))

Moreover,⊕n
j=1Kj

⊕n
j=1K

′
j C

σ

τ

commutes ⇔
Kj

K ′j C

σj

τj

commutes

Thus ∏
τ∈K′(C)σ

τ(x′) =
∏

τj∈K′
j(C)σj

τj(x
′
j)

= σj(NK′
j/K

(x′j)) (by case 2)

= σ(NK′/K(x′))



2 Chow groups 14

Lemma 1.13. Let p1, . . . , pn be distinct prime numbers and let m1, . . . ,mn be positive
integers. Then there is an algebraic number field K such that[

OK/
p : Z

/
(pi)

]
≥ mi

for i = 1, . . . , n and all p ∈ Spec(OK) with p ∩ Z = piZ.

Proof. Let fi ∈ Z
/

(pi)
[X] be an irreducible monic polynomial of degree mi. Indeed,

such polynomial exists: since the multiplicative group of non-zero elements of any
finite field is cyclic; if we take K ′ = Fpmii and β be a generator of the multiplicative

group of K, by the primitive element theorem, we have that K = Fpi(β). In particular,
the minimal polynomial of β over Fpi , which is irreducible, must have the same degree
as [Fpi(β) : Fpi ] = [K ′ : F] = mi.
Now let Fi ∈ Z[X] such that Fi = fi, and

F (X) =

n∏
i=1

Fi(X)

Let K be the splitting field of F . Then if αi is a root of Fi(X), αi ∈ OK since αi
is a root of F ∈ Z[X]. Let p ∈ Spec(OK) lying over piZ , and let αi be the class of

αi in OK
/
p. Then Z

/
(pi)
⊂ OK

/
p hence, as fi(αi) = 0 and fi irreducible, it is the

minimal polynomial of αi and therefore[
OK/

p : Z
/

(pi)

]
≥
[
Z/

(pi)
(αi) : Z

/
(pi)

]
= mi

2 Chow groups

2.1 Geometric Chow groups

Definition 2.1 (Weil divisors). The group of Weil divisors (or algebraic cycles of
co-dimension 1) denoted Z1(O) is the free abelian group with basis consisting of all
maximal prime ideals of O i.e

Z1(O) =
⊕

m∈m-Spec(O)

Z[m]

Elements of Z1(O), also called 1-codimensional cycles are simply formal sums∑
m

nm · [m]

where nm ∈ Z and m is a maximal ideal of O.
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Now recall that from the last section of talk 1 (proposition (4.3) or [1] p.10) that
for a maximal ideal m ∈ m-Spec(O) the order map (defined on O \ {0}) extends to a
unique group homomorphism

ordm : K× −→ Z

Such that for every non-zero x = y
z ∈ K,

ordm(x) = lengthOm

(
Om
/
xOm

)
= ordm(y)− ordm(z)

Definition 2.2 (divisors). For any non-zero element of K we define its divisor to be

div(x) =
∑

m∈m-Spec(O)

ordm(x)[m]

The order of a regular element is indeed an element of Z1(O) and the order homo-
morphism extends uniquely into a group homomorphism

div : K× −→ Z1(O)

(by inherited properties of the order map).

Definition 2.3 (Rational equivalence). Two cycles α, β of codim 1 in Z1(O) are
said to be rationally equivalent if their difference is a divisor of some non-zero regular
element in K, i,e

α ∼ β ⇔ α− β ∈ div(K×)

We denote B1(O) := div(K×) ≤ Z1(O) the subgroup consiting of cycles that are
rationally equivalent to 0. Then one can finally define chow groups as the following:

Definition 2.4 (Chow groups of codim 1). We define the Chow group of codimension
1 of a reduced order O to be the group

CH1(O) = Z1(O)/
B1(O)

To give some ground floor and motivations behind the definitions of Chow groups,
assume that O is normal and let K be its quotient field. (For example, take Om to
be the maximal order in some number field.) then Om is a DVR (in fact, this stands
for every height 1 prime ideal) thus any ideal a of Om is a power of the maximal ideal
mOm, that is vm(a) where vm is the valuation on O. Moreover, vm(a) = lengthm(O/a)m
induces a bijection from the group of fractional ideals of O (non-zero finitely-generated
O-submodule) to the group of cycles of codimension 1:

ϕ : D(O)
∼−→ Z1(O)

a 7−→
∑

m∈m-Spec(O)

vm(a)[m]

Indeed, since O is a Dedekind domain, this follows from
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Proposition 2.5 ([4], Ch. I, Cor. 3.9). Let O be a Dedekind domain. Every fractional
ideal a admits a unique representation as a product

a =
∏
p

pvp(a)

with vp(a) ∈ Z and vp(a) = 0 for almost all p ∈ Spec(O). In other words, D(O) is the
free Abelian group on the set of nonzero prime ideals p of O.

One can easily see that under this bijection, the image of the subgroup of principal
ideals of O is precisely B1(O). Indeed, for a non-zero x = y

z ∈ K

ϕ(xO) = ϕ
(y
z
O
)

= ϕ(yO)− ϕ(zO)

=
∑

m∈m-Spec(O)

vm((y))[m]−
∑

m∈m-Spec(O)

vm((z))[m]

=
∑

m∈m-Spec(O)

ordm(y)[m]−
∑

m∈m-Spec(O)

ordm(z)[m] ∈ B1(O).

Thus one has a group isomorphism

Cl(O) ∼= CH1(O).

Where Cl(O) denotes the ideal class group of O.

Remark 2.6. Any non-zero ring has a non-trivial Chow group (since any non-zero
ring has at least one maximal ideal).

2.2 Arithmetic Chow groups

In a similar fashion, we define Arithmetic Chow groups as a generalization of geometric
Chow groups, where an “analytic” data is added.

Definition 2.7 (Arithmetic divisors). The group of arithmetic divisor (or arithmetic

cycles of co-dimension 1) denoted Ẑ1(O) is the direct sum of the group of Weil divisors
and an R-vector space generated by K(C). i.e

Ẑ1(O) = Z1(O)×

 ⊕
σ∈K(C)

R[σ]


Elements of Ẑ1(O), also called 1-codimensional arithmetic cycles are pairs of the form(∑

m

nm · [m],
∑
σ

λσ[σ]

)

where nm ∈ Z, λσ ∈ R and m ∈ m-Spec(O).
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Definition 2.8 (Arithmetic divisors). For any non-zero element of K we define its
arithmetic divisor to be

d̂iv(x) =

(∑
m

ordm(x)[m],
∑
σ

− log |σ(x)|2[σ]

)
∈ Ẑ1(O)

By a similar argument, one sees that the induced map

d̂iv : K× −→ Ẑ1(O)

is a homomorphism of Abelian groups.

Definition 2.9 (Arithmetic Chow groups of codim 1). We define the arithmetic Chow
group of codimension 1 of a reduced order O to be the group

ĈH
1
(O) = Ẑ1(O)/

im(d̂iv)

Now, for an element (D, g) ∈ Ẑ1(O) we set

d̂eg(D, g) =
∑

m∈m-Spec(O)

nm log(#
(
O/

m

)
) +

1

2

∑
σ∈K(C)

gσ ∈ R

Then for x ∈ K×

d̂eg ◦ d̂iv(x) =
∑

m∈m-Spec(O)

ordm(x) log(#
(
O/

m

)
)−

∑
σ∈K(C)

log |σ(x)|

= − log

 ∏
m∈m-Spec(O)

(#
(
O/

m

)
)−ordm(x) ·

∏
σ∈K(C)

|σ(x)|


= 0 (By the product formula in Theorem ??)

Thus the map factors through ĈH
1
(O) and we have

Ẑ1(O) R

ĈH
1
(O)

d̂eg

d̂eg
′ commutes.

Exercise 2.10. Suppose O = Z, K = Q. Is the d̂eg
′

map an isomorphism ?
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